

© Environment Agency Austria

CONTAMINANTS OF EMERGING CONCERN

Acknowledgements:

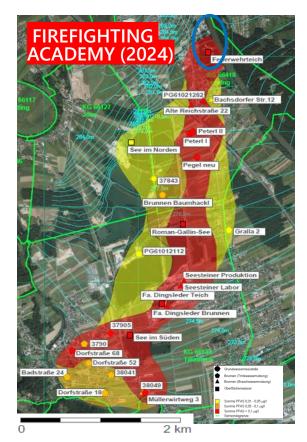
Revision of operational Trigger Values in Austria Philippe BRANDNER (blp geoservices); **Angelika BRUNNER (Land Salzburg)** Gernot DÖBERL; Timo DÖRRIE, Martin WEISGRAM (EAA)

Dietmar MÜLLER-GRABHERR: 7. October 2025

OUTLINE

- Policy frame & legislation in Austria
- Overviewing Threshold Values
 - 'Trigger Values' an important building block for risk-informed & stepwise approaches
- Understanding the systemic context (or 'painting by numbers'?)
- Understanding natural systems (how to deal with irreversibility?)

LEGISLATIVE FRAMES undergoing changes

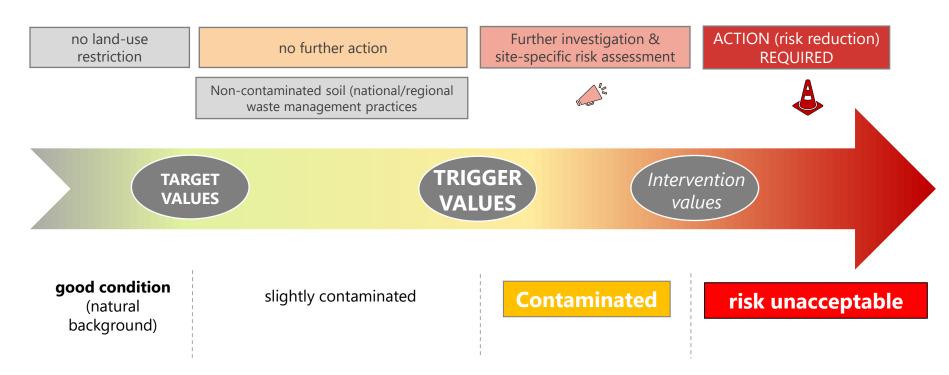

- ✓ ALSAG (2024)
- DRINKING WATER (2024)

PFAS-20: 0,1 μg/l

- [EFSA: PFAS-4: 0,002 μg/l]
- [proposal EU Water EQS)
 - PFAS-24: 0,0044 μg/l]
 - Relative Potency Factors

LEAD: 5 μg/l (until 2036)

POLLUTION AS A REALITY



獄

LEGISLATIVE FRAMEWORK IN AUSTRIA

- Water Act (WRG 1959)
 - strict "zero-contamination"-policy (2002 adopting EU WFD)
- **Waste Management Act (AWG 1990/2002)**
 - addressing contaminated soil
- Soil legislation (no legislation at federal level)
 - → soil protection responsibility of 9 provinces
- Contaminated Sites Remediation Act (ALSAG 1989)
 - waste taxation system to finance historically contaminated sites
 - 'serious hazard' (1992) but not providing any threshold values

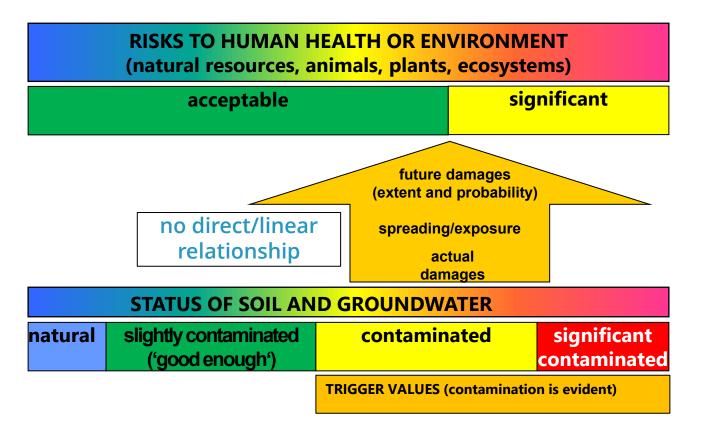
(generic) Threhold Values

THRESHOLD VALUES – AUSTRIA: How we started ...

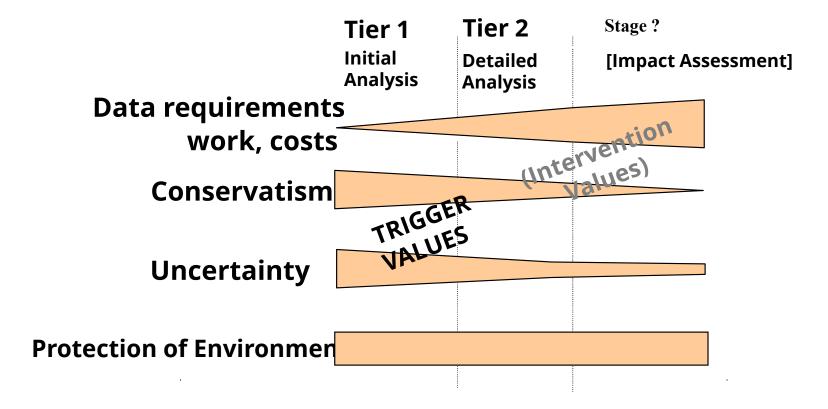
TECHNICAL GUIDANCE: Austrian Standards

- **□ ÖNORM S 2088-1 (1998): Groundwater**
 - rather strict "zero-contamination"-policy (+ WFD since 2002)
 - trigger values (= DWS * 0,6) & intervention values (= DWS)
 - difference threshold values (!): to verify input & account for local background
- □ ÖNORM S 2088-2 (2000): Soil
 - protecting soil functions (to control humans exposure & plants uptake)
 - trigger values: children & playgrounds, residential
 - intervention values": children & playgrounds
 - agriculture; recreational, industry (HHRA): no TV's
- □ ÖNORM S 2088-3 (2004): Vapour and landfill gas migration

Contaminated Sites Remediation Act (ALSAG 2024)


Assessment criteria (ALSAG 2024; Art. 14 (4) & (7))

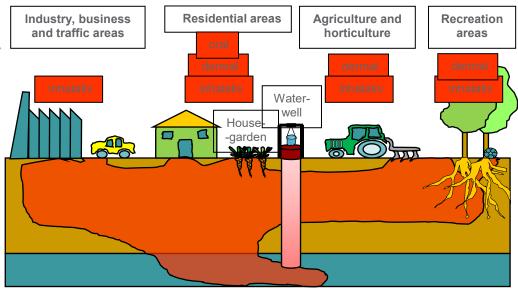
- i. Contaminants of Concern (**Properties**)
- ii. Intensity/concentration & extent of the 'source'
- iii. ground-/water: contaminant mass flow
- iv. length and trends of contaminant plumes
- v. Impacts on soil functions, water resources and uses
- vi. Human health risk analysis (contaminant exposure)


significant contamination

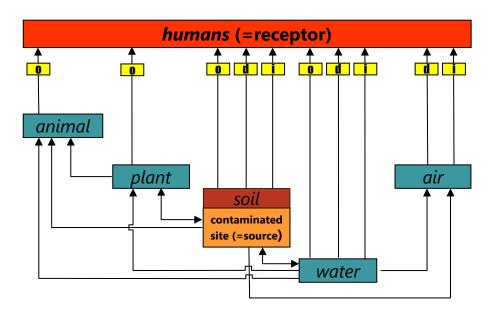
significant risk

RISK ASSESSMENT to allow for INFORMED DECISIONS

STEPWISE (TIERED) APPROACHES ... to support risk-informed decisions



Soil contamination and human health Use- & Site-specific characterisation


Contaminants (e.g. physico-chemical characteristics, toxicological profiles) and 3-dimensional distribution (->

Conceptual Models!)

Land use & "activities"

Soil contamination & Soil Trigger Values in HHRA SIMPLIFIED (no modelling): activity, pathway & user group

... which pathways are relevant for specific land uses?

REVISING TRIGGER VALUES

DERIVATION (for transparency reported in Annexes):

- specified references (& tox-data sources)
- back-calculation:
 - Groundwater: allowing for 60 % of the DWS
 - Soil: simple exposure equations allowing for 20 % of the TDI

■ 'cross checks':

- urban background values
- other threshold value lists (EU member states)
- Rounding off

→ 'systemic controls' (new):

- science (e.g. 'endpoints' in toxicity)
- policy plausibility and systemic consistency

SOIL TRIGGER VALUES ÖNORM S 2088-2 (2014)

Parameter	Dimension	Trigger value				
		playground	residential*	agriculture**		
Antimony	mg/kg	5	60	2		
Arsenic	mg/kg	20	50	20		
Lead	mg/kg	100	500	100		
Cadmium	mg/kg	2	2	0,5		
Chromium	mg/kg	100	75	100		
Cobalt	mg/kg	-	-	50		
Copper	mg/kg	100	500	100		
Molybdenum	mg/kg	-	-	2,5		
Nickel	mg/kg	70	-	100		
Mercury	mg/kg	1	10	0,5		
Selenium	mg/kg	-	-	1		
Thallium	mg/kg	-	-	1		
Vanadium	mg/kg	-	-	100		
Zinc	mg/kg	-	-	300		
Fluoride	mg/kg	-	-	200		
Cyanide	mg/kg	5	-	5		
TPH	mg/kg	50	-	200		
PCDD/F	ng TE/kg	50	600	10		
PCB	mg/kg	0,2	2	0,1		
PAH	mg/kg	4	10	2		
Benz(a)pyren	mg/kg	0,1	0,5	-		

REVISION (upcoming 2026)

☑ Lead (Pb)

Cross check:

background value: 100 mg/kg

Systemic check

EFSA (2011): ref. value 0.5 mg/kg/day

- toxicological endpoint:
 - effects on childrens'
 - central nervous system (IQ loss)

PROPOSAL:

playground: 50 mg/kg

PFAS: policy consistency weak

´no generic trigger values (in CLM)

WATCH OUT: limit values for soil reuse

GROUNDWATER TRIGGER VALUES ÖNORM S 2088-1 (2025)

☑ Lead (Pb)

Cross check:

background value: <2 μg/l

Systemic check

- ✓ DWS (2024): 5 µg/l
- policy frame consistent mg/kg/day

Revised TV's:

- leachate: 5 μg/l
- groundwater: 3 μg/l

PFAS:

Cross check:

- atmospheric deposition:
 - PFOS max. 0,01 μg/l
- background values (PFAS-20)
 - generally low
 - urban areas 0,005 0,01 μg/l

Systemic check

- DWS: PFAS-20 0,1 μg/l
- [EFSA: PFAS-4: 0,002 μg/l]
- [proposal EU Water EQS)
 - PFAS-24: 0,0044 μg/l]

PFAS: RELEVANT "VALUES" IN AUSTRIA

ÖNORM 2088-1 (Groundwater, 4th edition)

Table 2 (total content): No trigger value (!)

Table 3 (leachate): PFAS-20: 0.1 μg/l (in 2:1-eluate)

Table 4 (groundwater)

Parameter	Dimension	Quant. Limit	dA	dB	Trigger Value
Σ PFAS 20 ^m	μg/l	0,001 ⁿ	300 %	100 %	0,05
PFAS (single compounds) h (min: 28)	µg/l	0,001	300 %	100 %	0,01

CONCLUDING REMARKS Challenges in a new era of CLM

- Do we understand and translate new scientific findings well?
- Are robust sampling & analytical means available?
- □ Do we need & how to consider/account for:
 - uncertainties (conservatism & safety factors)
 - ubiquituous background concentrations?
 - fate, transport & bioaccumulation of contaminants?

IRREVERSIBILITY: We want to prevent, but how to know when do we will need to accept?

Contact & Information

QUESTIONS AND REMARKS WELCOME!

Dietmar Müller-Grabherr

MANY THANKS!

Environment Agency Austria (EAA)

dietmar.mueller-grabherr@umweltbundesamt.at

www.umweltbundesamt.at

X twitter.com/umwelt_at

in www.linkedin.com/company/umweltbundesamt

ENSOr 6

Brussels; 13 October 2025